Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338668

RESUMO

Non-alcoholic steatohepatitis (NASH) is an inflammatory form of non-alcoholic fatty liver disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes; however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine- and choline-deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation, and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.


Assuntos
Deficiência de Colina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metionina/metabolismo , Colina/metabolismo , Deficiência de Colina/complicações , Deficiência de Colina/metabolismo , Fígado/metabolismo , Racemetionina/metabolismo , Dieta , Inflamação/metabolismo , Quimiocinas/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Ann Neurol ; 95(4): 665-676, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379184

RESUMO

OBJECTIVE: To examine associations of serum insulin and related measures with neuropathology and cognition in older persons. METHODS: We studied 192 older persons (96 with diabetes and 96 without, matched by sex and balanced by age-at-death, education, and postmortem interval) from a community-based, clinical-pathologic study of aging, with annual evaluations including neuropsychological testing (summarized into global cognition and 5 cognitive domains) and postmortem autopsy. We assessed serum insulin, glucose, leptin, adiponectin, hemoglobin A1C, advanced glycation-end products (AGEs), and receptors for advanced glycation-end products, and calculated the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and adiponectin-to-leptin ratio. Using adjusted regression analyses, we examined the associations of serum measures with neuropathology of cerebrovascular disease and Alzheimer's disease, and with the level of cognition proximate-to-death. RESULTS: Higher HOMA-IR was associated with the presence of brain infarcts and specifically microinfarcts, and higher HOMA-IR and leptin were each associated with subcortical infarcts. Further, higher leptin levels and lower adiponectin-to-leptin ratios were associated with the presence of moderate-to-severe atherosclerosis. Serum insulin and related measures were not associated with the level of Alzheimer's disease pathology, as assessed by global, as well as amyloid burden or tau tangle density scores. Regarding cognitive outcomes, higher insulin and leptin levels, and lower adiponectin and receptors for advanced glycation-end products levels, respectively, were each associated with lower levels of global cognition. INTERPRETATION: Peripheral insulin resistance indicated by HOMA-IR and related serum measures was associated with a greater burden of cerebrovascular neuropathology and lower cognition. ANN NEUROL 2024;95:665-676.


Assuntos
Doença de Alzheimer , Diabetes Mellitus , Resistência à Insulina , Doenças do Sistema Nervoso , Humanos , Idoso , Idoso de 80 Anos ou mais , Leptina , Doença de Alzheimer/patologia , Adiponectina , Cognição , Insulina
4.
Cell Rep ; 42(12): 113512, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38039129

RESUMO

Mismatch between CO2 production (Vco2) and respiration underlies the pathogenesis of obesity hypoventilation. Leptin-mediated CNS pathways stimulate both metabolism and breathing, but interactions between these functions remain elusive. We hypothesized that LEPRb+ neurons of the dorsomedial hypothalamus (DMH) regulate metabolism and breathing in obesity. In diet-induced obese LeprbCre mice, chemogenetic activation of LEPRb+ DMH neurons increases minute ventilation (Ve) during sleep, the hypercapnic ventilatory response, Vco2, and Ve/Vco2, indicating that breathing is stimulated out of proportion to metabolism. The effects of chemogenetic activation are abolished by a serotonin blocker. Optogenetic stimulation of the LEPRb+ DMH neurons evokes excitatory postsynaptic currents in downstream serotonergic neurons of the dorsal raphe (DR). Administration of retrograde AAV harboring Cre-dependent caspase to the DR deletes LEPRb+ DMH neurons and abolishes metabolic and respiratory responses to leptin. These findings indicate that LEPRb+ DMH neurons match breathing to metabolism through serotonergic pathways to prevent obesity-induced hypoventilation.


Assuntos
Hipoventilação , Leptina , Camundongos , Animais , Leptina/metabolismo , Hipoventilação/metabolismo , Obesidade/metabolismo , Respiração , Hipotálamo/metabolismo , Receptores para Leptina/metabolismo
5.
Clin Med Insights Endocrinol Diabetes ; 16: 11795514231218592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107873

RESUMO

Background: The rapidly rising cardiometabolic disease (CMD) burden in urbanizing sub-Saharan African populations and among sub-Saharan African migrants in Europe likely affects serum adiponectin and leptin levels, but this has not yet been quantified. Objectives: To compare the serum levels of adiponectin and leptin among migrant, and non-migrant (urban and rural) populations of Ghanaian descent. Methods: Cross-sectional analysis of serum leptin and adiponectin in the multi-centre Research on Obesity and Diabetes among African Migrants (RODAM) study. Logistic-regression models were used to examine the association between these adipocyte-derived hormones after stratification (sex, geographic area) and adjustments for potential confounders. Results: A total of 2518 Ghanaians were included. Rural participants had the highest serum adiponectin and lowest leptin levels compared to Amsterdam and urban Ghanaians (P < .001). In fully adjusted models, participants living in urban Ghana had significantly higher odds of hyperleptinemia compared to rural participants (women-odds ratio 2.88; 95% CI, 1.12-7.38, P = .028 and men 43.52, 95% CI, 4.84-391.25, P < .001). Urban Ghanaian men also had higher odds of elevated leptin: adiponectin ratio (6.29, 95% CI, 1.43-27.62, P = .015). The odds of hyperleptinemia were only higher in Amsterdam Ghanaian men (10.56; 95% CI, 1.11-100.85, P = .041), but not in women (0.85; 95% CI, 0.30-2.41, P = .759). There was no significant association between hypoadiponectinemia and geographical location in both sexes. Conclusion: Urbanization is associated with serum adiponectin and leptin levels after adjusting for confounding covariates in sub-Saharan Africans. These findings serve as a backdrop for further research on the role adipokines play in CMD epidemiology among Africans.

6.
Aging Dis ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38029396

RESUMO

Type-2 diabetes is associated with an increased risk of dementia, and the underlying mechanism might involve abnormal insulin signaling in the brain. The objective of this study was to examine the association of postmortem brain insulin signaling with late-life cognitive decline. Among participants of Religious Orders Study, a community-based clinical-pathological cohort, 150 deceased and autopsied older individuals (75 with diabetes matched to 75 without by age at death, sex, and education) had postmortem brain insulin signaling measurements collected in the prefrontal cortex using ELISA and immunohistochemistry. By using adjusted linear mixed-effects models, we examined the association of postmortem brain insulin signaling with late-life cognitive function assessed longitudinally (mean follow-up duration = 9.4 years) using a battery of neuropsychological tests. We found that a higher level of serine/threonine-protein kinase (AKT) phosphorylation (pT308AKT1/total AKT1) was associated with a faster decline in global cognition (estimate = -0.023, p = 0.030), and three domains: episodic memory (estimate = -0.024, p = 0.032), working memory (estimate = -0.018, p = 0.012), and visuospatial abilities (estimate = -0.013, p = 0.027). The level of insulin receptor substrate-1 (IRS1) phosphorylation (pS307IRS1/total IRS1) was not associated with decline in global cognition or most cognitive domains, except for perceptual speed (estimate = 0.020, p = 0.020). The density of pS616IRS1-stained cells was not associated with decline in global cognition or any of the domains. In conclusion, these findings provide novel evidence for an association between brain insulin signaling and late-life cognitive decline. AKT phosphorylation is associated with a decline in global cognition and memory in particular, whereas IRS1 phosphorylation is associated with a decline in perceptual speed.

7.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014152

RESUMO

Non-Alcoholic Steatohepatitis (NASH) is an inflammatory form of Non-Alcoholic Fatty Liver Disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes, however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine and choline deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.

8.
J Cell Biochem ; 124(11): 1695-1704, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37795573

RESUMO

Insulin resistance is a critical mediator of the development of nonalcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of NAFLD. Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of protein kinase B (Akt) phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-acetyl cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Insulina/farmacologia , Hepatócitos/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-37523934

RESUMO

Several endocrine disorders, including diabetes, insulinoma, Cushing syndrome, hypothyroidism, polycystic ovarian syndrome, and growth hormone deficiency, are associated with obesity. The mechanisms underlying the development of obesity vary according to the abnormalities of endocrine function. The primary actions of insulin, glucocorticoids (GCs), thyroid hormone, and growth hormone are associated with energy metabolism in the liver, muscle, adipose tissue, and other tissues. This chapter describes the pathogenesis of obesity and metabolic dysfunction associated with excess insulin or GCs and the deficiency of thyroid hormone or growth hormone.


Assuntos
Resistência à Insulina , Insulinas , Síndrome do Ovário Policístico , Feminino , Humanos , Obesidade/complicações , Síndrome do Ovário Policístico/complicações , Glucocorticoides/uso terapêutico , Hormônios Tireóideos , Hormônio do Crescimento
10.
Sleep ; 46(8)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37262435

RESUMO

Obesity and male sex are main risk factors for sleep-disordered breathing (SDB). We have shown that male diet-induced obesity (DIO) mice develop hypoventilation, sleep apnea, and sleep fragmentation. The effects of DIO on breathing and sleep architecture in females have not been investigated. We hypothesized that female mice are less susceptible to the detrimental effects of DIO on sleep and SDB compared to males. Female DIO-C57BL/6J and lean C57BL/6J mice underwent 24-hour metabolic studies and were exposed to 8% CO2 to measure the hypercapnic ventilatory response (HCVR), and sleep studies. Ventilatory response to arousals was calculated as ratio of the average and peak minute ventilation (VE) during each arousal relative to the baseline VE. Breathing stability was measured with Poincaré plots of VE. Female obesity was associated with decreased metabolism, indicated by reduced oxygen consumption (VO2) and CO2 production (VCO2). VE in 8% CO2 and HCVR were significantly attenuated during wakefulness. NREM sleep duration was reduced in DIO mice, but REM sleep was preserved. Ventilation during NREM and REM sleep was augmented compared to lean mice. Arousal frequency was similar between groups. Obesity increased the frequency of spontaneous arousals, whereas the apnea index was 4-fold reduced in DIO compared to lean mice. Obesity decreased pre- and post-apnea arousals. Obese mice had more stable breathing with reduced ventilatory response to arousals, compared to lean females. We conclude that obese female mice are protected against SDB, which appears to be related to an attenuated CO2 responsiveness, compared to the lean state.


Assuntos
Dióxido de Carbono , Síndromes da Apneia do Sono , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Dieta , Obesidade/complicações , Sono , Síndromes da Apneia do Sono/complicações , Hipercapnia
11.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162825

RESUMO

Insulin resistance is a critical mediator of the development of non-alcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of non-alcoholic fatty liver disease (NAFLD). Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of Akt phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-Acetyl Cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.

12.
Diabetes Metab Syndr ; 17(3): 102732, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36867973

RESUMO

AIMS: Although obesity is associated with chronic disease, a large section of the population with high BMI does not have an increased risk of metabolic disease. Increased visceral adiposity and sarcopenia are also risk factors for metabolic disease in people with normal BMI. Artificial Intelligence (AI) techniques can help assess and analyze body composition parameters for predicting cardiometabolic health. The purpose of the study was to systematically explore literature involving AI techniques for body composition assessment and observe general trends. METHODS: We searched the following databases: Embase, Web of Science, and PubMed. There was a total of 354 search results. After removing duplicates, irrelevant studies, and reviews(a total of 303), 51 studies were included in the systematic review. RESULTS: AI techniques have been studied for body composition analysis in the context of diabetes mellitus, hypertension, cancer and many specialized diseases. Imaging techniques employed for AI methods include CT (Computerized Tomography), MRI (Magnetic Resonance Imaging), ultrasonography, plethysmography, and EKG(Electrocardiogram). Automatic segmentation of body composition by deep learning with convolutional networks has helped determine and quantify muscle mass. Limitations include heterogeneity of study populations, inherent bias in sampling, and lack of generalizability. Different bias mitigation strategies should be evaluated to address these problems and improve the applicability of AI to body composition analysis. CONCLUSIONS: AI assisted measurement of body composition might assist in improved cardiovascular risk stratification when applied in the appropriate clinical context.


Assuntos
Inteligência Artificial , Hipertensão , Humanos , Composição Corporal , Eletrocardiografia , Fatores de Risco de Doenças Cardíacas
13.
J Am Heart Assoc ; 12(4): e027693, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752232

RESUMO

As the worldwide prevalence of overweight and obesity continues to rise, so too does the urgency to fully understand mediating mechanisms, to discover new targets for safe and effective therapeutic intervention, and to identify biomarkers to track obesity and the success of weight loss interventions. In 2016, the American Heart Association sought applications for a Strategically Focused Research Network (SFRN) on Obesity. In 2017, 4 centers were named, including Johns Hopkins University School of Medicine, New York University Grossman School of Medicine, University of Alabama at Birmingham, and Vanderbilt University Medical Center. These 4 centers were convened to study mechanisms and therapeutic targets in obesity, to train a talented cadre of American Heart Association SFRN-designated fellows, and to initiate and sustain effective and enduring collaborations within the individual centers and throughout the SFRN networks. This review summarizes the central themes, major findings, successful training of highly motivated and productive fellows, and the innovative collaborations and studies forged through this SFRN on Obesity. Leveraging expertise in in vitro and cellular model assays, animal models, and humans, the work of these 4 centers has made a significant impact in the field of obesity, opening doors to important discoveries, and the identification of a future generation of obesity-focused investigators and next-step clinical trials. The creation of the SFRN on Obesity for these 4 centers is but the beginning of innovative science and, importantly, the birth of new collaborations and research partnerships to propel the field forward.


Assuntos
American Heart Association , Sobrepeso , Animais , Humanos , Sobrepeso/epidemiologia , Sobrepeso/terapia , Obesidade/epidemiologia , Obesidade/terapia , Causalidade , New York
14.
Obesity (Silver Spring) ; 31(2): 479-486, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36628617

RESUMO

OBJECTIVE: This study tested the hypothesis that obesity and metabolic abnormalities correlate with background parenchymal enhancement (BPE), the volume and intensity of enhancing fibroglandular breast tissue on dynamic contrast-enhanced magnetic resonance imaging. METHODS: Participants included 59 premenopausal women at high risk of breast cancer. Obesity was defined as BMI ≥ 30 kg/m2 . Metabolic parameters included dual-energy x-ray absorptiometry-quantified body composition, plasma biomarkers of insulin resistance, adipokines, inflammation, lipids, and urinary sex hormones. BPE was assessed using computerized algorithms on dynamic contrast-enhanced magnetic resonance imaging. RESULTS: BMI was positively correlated with BPE (r = 0.69; p < 0.001); participants with obesity had higher BPE than those without obesity (404.9 ± 189.6 vs. 261.8 ± 143.8 cm2 ; Δ: 143.1 cm2 [95% CI: 49.5-236.7]; p = 0.003). Total body fat mass (r = 0.68; p < 0.001), body fat percentage (r = 0.64; p < 0.001), visceral adipose tissue area (r = 0.65; p < 0.001), subcutaneous adipose tissue area (r = 0.60; p < 0.001), insulin (r = 0.59; p < 0.001), glucose (r = 0.35; p = 0.011), homeostatic model of insulin resistance (r = 0.62; p < 0.001), and leptin (r = 0.60; p < 0.001) were positively correlated with BPE. Adiponectin (r = -0.44; p < 0.001) was negatively correlated with BPE. Plasma biomarkers of inflammation and lipids and urinary sex hormones were not correlated with BPE. CONCLUSIONS: In premenopausal women at high risk of breast cancer, increased BPE is associated with obesity, insulin resistance, leptin, and adiponectin.


Assuntos
Neoplasias da Mama , Resistência à Insulina , Humanos , Feminino , Leptina , Adiponectina , Obesidade/metabolismo , Lipídeos , Inflamação
16.
JCI Insight ; 7(22)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318703

RESUMO

There are limited data on the link between cardiac autonomic neuropathy (CAN) and severe hypoglycemia in type 2 diabetes. Here, we evaluated the associations of CAN with severe hypoglycemia among 7,421 adults with type 2 diabetes from the Action to Control Cardiovascular Risk in Diabetes study. CAN was defined using ECG-derived measures. Cox's and Andersen-Gill regression models were used to generate HRs (HRs) for the first and recurrent severe hypoglycemic episodes, respectively. Over 4.7 years, there were 558 first and 811 recurrent hypoglycemic events. Participants with CAN had increased risks of a first episode or recurrent episodes of severe hypoglycemia. The intensity of glycemic management modified the CAN association with hypoglycemia. In the standard glycemic management group, compared with those of participants without CAN, HRs for a first severe hypoglycemia event and recurrent hypoglycemia were 1.58 and 1.96, respectively. In the intensive glycemic management group, HRs for a first severe hypoglycemia event and recurrent hypoglycemia were 1.10 and 1.24, respectively. In summary, CAN was independently associated with higher risks of a first hypoglycemia event and recurrent hypoglycemia among adults with type 2 diabetes, with the highest risk observed among those on standard glycemic management.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Disautonomias Primárias , Adulto , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Risco , Hipoglicemia/complicações , Hipoglicemiantes/efeitos adversos
17.
J Physiol ; 600(23): 5145-5162, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214387

RESUMO

Sleep-disordered breathing (SDB) affects over 50% of obese individuals. Exaggerated hypoxic chemoreflex is a cardinal trait of SDB in obesity. We have shown that leptin acts in the carotid bodies (CB) to augment chemoreflex and that leptin activates the transient receptor potential melastatin 7 (TRPM7) channel. However, the effect of leptin-TRPM7 signalling in CB on breathing and SDB has not been characterized in diet-induced obesity (DIO). We hypothesized that leptin acts via TRPM7 in the CB to increase chemoreflex leading to SDB in obesity. DIO mice were implanted with EEG/EMG electrodes and transfected with Leprb short hairpin RNA (shRNA) or Trpm7 shRNA vs. control shRNA in the CB area bilaterally. Mice underwent a full-polysomnography and metabolic studies at baseline and after transfection. Ventilatory responses to hypoxia and hypercapnia were assessed during wakefulness. Leprb and Trpm7 were upregulated and their promoters were demethylated in the CB of DIO mice. Leprb knockdown in the CB did not significantly affect ventilation. Trpm7 knockdown in the CB stimulated breathing during sleep in normoxia. These effects were not driven by changes in CB chemosensitivity or metabolism. Under sustained hypoxia, Trpm7 shRNA in the CB augmented ventilation during sleep, but decreased oxyhaemoglobin saturation. We conclude that the suppression of TRPM7 in the CB improved sleep-related hypoventilation and that the respiratory effects of CB TRPM7 channels in obesity are independent of leptin. TRPM7 signalling in the CB could be a therapeutic target for the treatment of obesity-related SDB. KEY POINTS: The leptin-TRPM7 axis in the carotid bodies may play an important role in the pathogenesis of sleep-disordered breathing. TRPM7 channels regulate breathing during sleep by acting peripherally in the carotid bodies. Suppression of TRPM7 signalling in the carotid bodies improves the obesity-induced hypoventilation in mice. Pharmacological blockade of TRPM7 channels in the carotid bodies could be a therapy for sleep-disordered breathing in obesity.


Assuntos
Corpo Carotídeo , Síndromes da Apneia do Sono , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Corpo Carotídeo/fisiologia , Leptina/metabolismo , Hipoventilação/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , RNA Interferente Pequeno , Sono/fisiologia , Obesidade/complicações , Obesidade/metabolismo , Camundongos Obesos , Síndromes da Apneia do Sono/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo
18.
J Cell Physiol ; 237(8): 3421-3432, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35822903

RESUMO

Hepatic glucose production (HGP) is crucial for the maintenance of normal glucose homeostasis. Although hepatic insulin resistance contributes to excessive glucose production, its mechanism is not well understood. Here, we show that inositol polyphosphate multikinase (IPMK), a key enzyme in inositol polyphosphate biosynthesis, plays a role in regulating hepatic insulin signaling and gluconeogenesis both in vitro and in vivo. IPMK-deficient hepatocytes exhibit decreased insulin-induced activation of Akt-FoxO1 signaling. The expression of messenger RNA levels of phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose 6-phosphatase (G6pc), key enzymes mediating gluconeogenesis, are increased in IPMK-deficient hepatocytes compared to wild type hepatocytes. Importantly, re-expressing IPMK restores insulin sensitivity and alleviates glucose production in IPMK-deficient hepatocytes. Moreover, hepatocyte-specific IPMK deletion exacerbates hyperglycemia and insulin sensitivity in mice fed a high-fat diet, accompanied by an increase in HGP during pyruvate tolerance test and reduction in Akt phosphorylation in IPMK deficient liver. Our results demonstrate that IPMK mediates insulin signaling and gluconeogenesis and may be potentially targeted for treatment of diabetes.


Assuntos
Glucose , Resistência à Insulina , Insulina , Fígado , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Proteína Forkhead Box O1/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Camundongos , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
19.
J Infect Dis ; 226(9): 1626-1636, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35512127

RESUMO

BACKGROUND: Antiretroviral therapy (ART) containing integrase strand transfer inhibitors (INSTIs) has been associated with weight gain in both ART initiation and switch studies, especially in women, but the underlying mechanisms are unclear. METHODS: The effects of dolutegravir (DTG) on food intake, energy expenditure, oxygen consumption in female mice, and gene expression from adipose tissues were assessed. Human and murine preadipocytes were treated with DTG either during differentiation into mature brown/beige adipocytes or postdifferentiation. Lipid accumulation, lipolysis, ß-adrenergic response, adipogenic markers, mitochondrial respiration, and insulin response were analyzed. RESULTS: Two-week administration of DTG to female mice reduced energy expenditure, which was accompanied by decreased uncoupling protein 1 (UCP1) expression in brown/beige adipose tissues. In vitro studies showed that DTG significantly reduced brown adipogenic markers, especially UCP1 in brown and beige adipocytes, whereas drugs from other classes did not. Furthermore, a loss of UCP1 by DTG led to a decrease in mitochondrial complex IV component, followed by a reduction in mitochondrial respiratory capacity and reduced insulin-stimulated glucose uptake. CONCLUSIONS: Our findings show that DTG targets UCP1 and mitochondrial functions in brown and beige adipocytes and disrupts thermogenic functions in preclinical models, providing the potential mechanisms by which DTG suppresses energy expenditure leading to weight gain.


Assuntos
Adipócitos Bege , Insulinas , Feminino , Humanos , Camundongos , Animais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Adipócitos Bege/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Termogênese/genética , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , Aumento de Peso , Insulinas/metabolismo
20.
Physiol Rep ; 10(10): e15245, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35581741

RESUMO

Serotonin is an important mediator modulating behavior, metabolism, sleep, control of breathing, and upper airway function, but the role of aging in serotonin-mediated effects has not been previously defined. Our study aimed to examine the effect of brain serotonin deficiency on breathing during sleep and metabolism in younger and older mice. We measured breathing during sleep, hypercapnic ventilatory response (HCVR), CO2 production (VCO2 ), and O2 consumption (VO2 ) in 16-18-week old and 40-44-week old mice with deficiency of tryptophan hydroxylase 2 (Tph2), which regulates serotonin synthesis specifically in neurons, compared to Tph2+/+ mice. As expected, aging decreased VCO2 and VO2 . Tph2 knockout resulted in an increase in both metabolic indexes and no interaction between age and the genotype was observed. During wakefulness, neither age nor genotype had an effect on minute ventilation. The genotype did not affect hypercapnic sensitivity in younger mice. During sleep, Tph2-/- mice showed significant decreases in maximal inspiratory flow in NREM sleep, respiratory rate, and oxyhemoglobin saturation in REM sleep, compared to wildtype, regardless of age. Neither serotonin deficiency nor aging affected the frequency of flow limited breaths (a marker of upper airway closure) or apneas. Serotonin deficiency increased the amount and efficiency of sleep only in older animals. In conclusion, younger Tph2-/- mice were able to defend their ventilation and phenotypically did not differ from wildtype during wakefulness. In contrast, both young and old Tph2-/- mice showed sleep-related hypoventilation, which was manifested by hypoxemia during REM sleep.


Assuntos
Respiração , Serotonina , Animais , Encéfalo/metabolismo , Hipercapnia , Camundongos , Serotonina/metabolismo , Sono REM/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...